On the Traveling Fly Problem
- Published in 1996
- Added on
In the collections
Gargano, LoSacco and Gargano have studied the following problem: "if a fly starts at a random point inside a sphere of radius \(R^n\) and flies in a straight line in a random direction until it reaches the boundary, what is the average distance the fly travels?" They gave exact answers for \(n=1,2,3\) and approximate answers for \(4 \leq n \leq 9\), leaving the general case as an open problem. This problem is solved here.
Comment
The solution uses the fractions \(n/( (n-1)/( (n-2)/.... 1)))) \), which feels unexpected.
Links
Other information
- key
- OntheTravelingFlyProblem
- type
- article
- date_added
- 2025-04-22
- date_published
- 1996-09-26
BibTeX entry
@article{OntheTravelingFlyProblem,
key = {OntheTravelingFlyProblem},
type = {article},
title = {On the Traveling Fly Problem},
author = {Svante Janson},
abstract = {Gargano, LoSacco and Gargano have studied the following problem: "if a fly starts at a random point inside a sphere of radius \(R^n\) and flies in a straight line in a random direction until it reaches the boundary, what is the average distance the fly travels?"
They gave exact answers for \(n=1,2,3\) and approximate answers for \(4 \leq n \leq 9\), leaving the general case as an open problem. This problem is solved here.},
comment = {The solution uses the fractions \(n/( (n-1)/( (n-2)/.... 1)))) \), which feels unexpected.},
date_added = {2025-04-22},
date_published = {1996-09-26},
urls = {https://www2.math.uu.se/{\~{}}svantejs/papers/sj114.pdf},
collections = {animals,easily-explained,fun-maths-facts},
url = {https://www2.math.uu.se/{\~{}}svantejs/papers/sj114.pdf},
urldate = {2025-04-22},
year = 1996
}