### BibTeX entry

@article{MaxMinPuzzlesinGeometry,
key = {MaxMinPuzzlesinGeometry},
type = {article},
title = {Max/Min Puzzles in Geometry},
author = {James M Parks},
abstract = {The objective here is to find the maximum polygon, in area, which can be
enclosed in a given triangle, for the polygons: parallelograms, rectangles and
squares. It will initially be assumed that the choices are inscribed polygons,
that is all vertices of the polygon are on the sides of the triangle. This
concept will be generalized later to include wedged polygons.},
comment = {},
date_added = {2022-02-16},
date_published = {2022-10-09},
urls = {http://arxiv.org/abs/2201.02050v4,http://arxiv.org/pdf/2201.02050v4},
collections = {geometry,puzzles},
url = {http://arxiv.org/abs/2201.02050v4 http://arxiv.org/pdf/2201.02050v4},
year = 2022,
urldate = {2022-02-16},
archivePrefix = {arXiv},
eprint = {2201.02050},
primaryClass = {math.HO}
}