Mangoes and Blueberries
- Published in 1999
- Added on
In the collections
We prove the following conjecture of Erdős and Hajnal: For every integer \(k\) there is an \(f(k)\) such that if for a graph \(G\), every subgraph \(H\) of \(G\) has a stable set containing vertices, then \(G\) contains a set \(X\) of at most \(f(k)\) vertices such that \(G−X\) is bipartite. This conjecture was related to me by Paul Erdős at a conference held in Annecy during July of 1996. I regret not being able to share the answer with him.
Links
- https://link.springer.com/article/10.1007/s004930050056
- https://link.springer.com/content/pdf/10.1007/s004930050056.pdf
Other information
- key
- MangoesandBlueberries
- type
- article
- date_added
- 2020-09-21
- date_published
- 1999-11-11
- publisher
- Bolyai Society – Springer-Verlag
- fulltext_html_url
- https://link.springer.com/article/10.1007/s004930050056
- journal
- Combinatorica
- issn
- 1439-6912
- volume
- 19
- issue
- 2
- identifier
- doi:10.1007/s004930050056
- doi
- 10.1007/s004930050056
- pages
- 267-296
BibTeX entry
@article{MangoesandBlueberries,
key = {MangoesandBlueberries},
type = {article},
title = {Mangoes and Blueberries},
author = {Bruce Reed},
abstract = {We prove the following conjecture of Erd{\H{o}}s and Hajnal:
For every integer \(k\) there is an \(f(k)\) such that if for a graph \(G\), every subgraph \(H\) of \(G\) has a stable set containing vertices, then \(G\) contains a set \(X\) of at most \(f(k)\) vertices such that \(G−X\) is bipartite.
This conjecture was related to me by Paul Erd{\H{o}}s at a conference held in Annecy during July of 1996. I regret not being able to share the answer with him.},
comment = {},
date_added = {2020-09-21},
date_published = {1999-11-11},
urls = {https://link.springer.com/article/10.1007/s004930050056,https://link.springer.com/content/pdf/10.1007/s004930050056.pdf},
collections = {attention-grabbing-titles,food},
url = {https://link.springer.com/article/10.1007/s004930050056 https://link.springer.com/content/pdf/10.1007/s004930050056.pdf},
year = 1999,
urldate = {2020-09-21},
publisher = {Bolyai Society – Springer-Verlag},
fulltext_html_url = {https://link.springer.com/article/10.1007/s004930050056},
journal = {Combinatorica},
issn = {1439-6912},
volume = 19,
issue = 2,
identifier = {doi:10.1007/s004930050056},
doi = {10.1007/s004930050056},
pages = {267-296}
}