Counterexamples To a Theorem of Cauchy
- Published in 1968
- Added on
In the collections
B. Huppert writes (in [1; p. 304]): "Die folgende, bisher unbewiesene Vermutung stammt schon von Cauchy ([2], S.1199; siehe auch Frobenius [4], S.353): Sei \(p \neq 2\) eine Primzahl, \(\mathfrak{G}\) eine primitive Permutationsgruppe vom Grad \(p+1\). Dann ist \(\mathfrak{G}\) zweifach transitiv." Actually, Cauchy announces without proof a theorem which Frobenius (loc. cit.) and de Séguier ([3; p. 86, note 4]) show to be false, and he deduces from it that primitive groups of degree \(p+1\) (\(p\) an odd prime) are two-fold transitive. Both Frobenius and de Séguier point out that this latter result is nevertheless true for \(p \leq 13\); Huppert proves it with the additional assumption that the groups in question be soluble; and W. R. Scott ([5; §§13.7, 13.8]) gives a verification for groups containing regular subgroups in the cases \(p \leq 37\).
Links
Other information
- key
- CounterexamplesToaTheoremofCauchy
- type
- article
- date_added
- 2024-10-09
- date_published
- 1968-12-07
BibTeX entry
@article{CounterexamplesToaTheoremofCauchy, key = {CounterexamplesToaTheoremofCauchy}, type = {article}, title = {Counterexamples To a Theorem of Cauchy}, author = {Peter M. Neumann, Charles C. Sims, James Wiegold}, abstract = {B. Huppert writes (in [1; p. 304]): "Die folgende, bisher unbewiesene Vermutung stammt schon von Cauchy ([2], S.1199; siehe auch Frobenius [4], S.353): Sei \(p \neq 2\) eine Primzahl, \(\mathfrak{\{}G{\}}\) eine primitive Permutationsgruppe vom Grad \(p+1\). Dann ist \(\mathfrak{\{}G{\}}\) zweifach transitiv." Actually, Cauchy announces without proof a theorem which Frobenius (loc. cit.) and de S{\'{e}}guier ([3; p. 86, note 4]) show to be false, and he deduces from it that primitive groups of degree \(p+1\) (\(p\) an odd prime) are two-fold transitive. Both Frobenius and de S{\'{e}}guier point out that this latter result is nevertheless true for \(p \leq 13\); Huppert proves it with the additional assumption that the groups in question be soluble; and W. R. Scott ([5; §§13.7, 13.8]) gives a verification for groups containing regular subgroups in the cases \(p \leq 37\).}, comment = {}, date_added = {2024-10-09}, date_published = {1968-12-07}, urls = {https://academic.oup.com/jlms/article-abstract/s1-43/1/234/933632}, collections = {attention-grabbing-titles,drama}, url = {https://academic.oup.com/jlms/article-abstract/s1-43/1/234/933632}, urldate = {2024-10-09}, year = 1968 }