Brazilian Primes Which Are Also Sophie Germain Primes
- Published in 2019
- Added on
In the collections
We disprove a conjecture of Schott that no Brazilian primes are Sophie Germain primes. We enumerate all counterexamples up to $10^{44}$.
Links
Other information
- key
- BrazilianPrimesWhichAreAlsoSophieGermainPrimes
- type
- article
- date_added
- 2019-03-13
- date_published
- 2019-11-11
BibTeX entry
@article{BrazilianPrimesWhichAreAlsoSophieGermainPrimes,
key = {BrazilianPrimesWhichAreAlsoSophieGermainPrimes},
type = {article},
title = {Brazilian Primes Which Are Also Sophie Germain Primes},
author = {Jon Grantham and Hester Graves},
abstract = {We disprove a conjecture of Schott that no Brazilian primes are Sophie
Germain primes. We enumerate all counterexamples up to {\$}10^{\{}44{\}}{\$}.},
comment = {},
date_added = {2019-03-13},
date_published = {2019-11-11},
urls = {http://arxiv.org/abs/1903.04577v1,http://arxiv.org/pdf/1903.04577v1},
collections = {Attention-grabbing titles,Easily explained,Fun maths facts,Integerology},
url = {http://arxiv.org/abs/1903.04577v1 http://arxiv.org/pdf/1903.04577v1},
year = 2019,
urldate = {2019-03-13},
archivePrefix = {arXiv},
eprint = {1903.04577},
primaryClass = {math.NT}
}