Brazilian Primes Which Are Also Sophie Germain Primes
- Published in 2019
- Added on
In the collections
We disprove a conjecture of Schott that no Brazilian primes are Sophie Germain primes. We enumerate all counterexamples up to $10^{44}$.
Links
Other information
- key
- BrazilianPrimesWhichAreAlsoSophieGermainPrimes
- type
- article
- date_added
- 2019-03-13
- date_published
- 2019-12-07
BibTeX entry
@article{BrazilianPrimesWhichAreAlsoSophieGermainPrimes, key = {BrazilianPrimesWhichAreAlsoSophieGermainPrimes}, type = {article}, title = {Brazilian Primes Which Are Also Sophie Germain Primes}, author = {Jon Grantham and Hester Graves}, abstract = {We disprove a conjecture of Schott that no Brazilian primes are Sophie Germain primes. We enumerate all counterexamples up to {\$}10^{\{}44{\}}{\$}.}, comment = {}, date_added = {2019-03-13}, date_published = {2019-12-07}, urls = {http://arxiv.org/abs/1903.04577v1,http://arxiv.org/pdf/1903.04577v1}, collections = {Attention-grabbing titles,Easily explained,Fun maths facts,Integerology}, url = {http://arxiv.org/abs/1903.04577v1 http://arxiv.org/pdf/1903.04577v1}, year = 2019, urldate = {2019-03-13}, archivePrefix = {arXiv}, eprint = {1903.04577}, primaryClass = {math.NT} }