Interesting Esoterica

Brazilian Primes Which Are Also Sophie Germain Primes

Article by Jon Grantham and Hester Graves
  • Published in 2019
  • Added on
We disprove a conjecture of Schott that no Brazilian primes are Sophie Germain primes. We enumerate all counterexamples up to $10^{44}$.

Links

Other information

key
BrazilianPrimesWhichAreAlsoSophieGermainPrimes
type
article
date_added
2019-03-13
date_published
2019-12-07

BibTeX entry

@article{BrazilianPrimesWhichAreAlsoSophieGermainPrimes,
	key = {BrazilianPrimesWhichAreAlsoSophieGermainPrimes},
	type = {article},
	title = {Brazilian Primes Which Are Also Sophie Germain Primes},
	author = {Jon Grantham and Hester Graves},
	abstract = {We disprove a conjecture of Schott that no Brazilian primes are Sophie
Germain primes. We enumerate all counterexamples up to {\$}10^{\{}44{\}}{\$}.},
	comment = {},
	date_added = {2019-03-13},
	date_published = {2019-12-07},
	urls = {http://arxiv.org/abs/1903.04577v1,http://arxiv.org/pdf/1903.04577v1},
	collections = {Attention-grabbing titles,Easily explained,Fun maths facts,Integerology},
	url = {http://arxiv.org/abs/1903.04577v1 http://arxiv.org/pdf/1903.04577v1},
	year = 2019,
	urldate = {2019-03-13},
	archivePrefix = {arXiv},
	eprint = {1903.04577},
	primaryClass = {math.NT}
}