# Astonishing Numbers

- Published in 2001
- Added on

In the collections

We say that an ordered pair of positive integers \(a,b\) with \(a \lt b\) is astonishing if the sum of the integers from \(a\) to \(b\), inclusive, is equal to the digits of \(a\) followed by the digits of \(b\). Determine all astonishing ordered pairs.

## Links

### BibTeX entry

@article{AstonishingNumbers, title = {Astonishing Numbers}, abstract = {We say that an ordered pair of positive integers \(a,b\) with \(a \lt b\) is astonishing if the sum of the integers from \(a\) to \(b\), inclusive, is equal to the digits of \(a\) followed by the digits of \(b\). Determine all astonishing ordered pairs.}, url = {https://cms.math.ca/publications/crux/issue/?volume=27{\&}issue=1 https://cms.math.ca/wp-content/uploads/crux-pdfs/CRUXv27n1.pdf}, year = 2001, author = {Richard Hoshino}, comment = {}, urldate = {2020-08-28}, collections = {attention-grabbing-titles,easily-explained,integerology} }