A Discrete and Bounded Envy-Free Cake Cutting Protocol for Any Number of Agents
- Published in 2016
- Added on
In the collections
We consider the well-studied cake cutting problem in which the goal is to find an envy-free allocation based on queries from n agents. The problem has received attention in computer science, mathematics, and economics. It has been a major open problem whether there exists a discrete and bounded envy-free protocol. We resolve the problem by proposing a discrete and bounded envy-free protocol for any number of agents. The maximum number of queries required by the protocol is nnnnnn. We additionally show that even if we do not run our protocol to completion, it can find in at most nn+1 queries a partial allocation of the cake that achieves proportionality (each agent gets at least 1/n of the value of the whole cake) and envy-freeness. Finally we show that an envy-free partial allocation can be computed in nn+1 queries such that each agent gets a connected piece that gives the agent at least 1/(3n) of the value of the whole cake.
Links
Other information
- key
- ADiscreteandBoundedEnvyFreeCakeCuttingProtocolforAnyNumberofAgents
- type
- article
- date_added
- 2016-10-13
- date_published
- 2016-06-07
BibTeX entry
@article{ADiscreteandBoundedEnvyFreeCakeCuttingProtocolforAnyNumberofAgents, key = {ADiscreteandBoundedEnvyFreeCakeCuttingProtocolforAnyNumberofAgents}, type = {article}, title = {A Discrete and Bounded Envy-Free Cake Cutting Protocol for Any Number of Agents}, author = {Haris Aziz and Simon Mackenzie}, abstract = {We consider the well-studied cake cutting problem in which the goal is to find an envy-free allocation based on queries from {\$}n{\$} agents. The problem has received attention in computer science, mathematics, and economics. It has been a major open problem whether there exists a discrete and bounded envy-free protocol. We resolve the problem by proposing a discrete and bounded envy-free protocol for any number of agents. The maximum number of queries required by the protocol is {\$}n^{\{}n^{\{}n^{\{}n^{\{}n^n{\}}{\}}{\}}{\}}{\$}. We additionally show that even if we do not run our protocol to completion, it can find in at most {\$}n^{\{}n+1{\}}{\$} queries a partial allocation of the cake that achieves proportionality (each agent gets at least {\$}1/n{\$} of the value of the whole cake) and envy-freeness. Finally we show that an envy-free partial allocation can be computed in {\$}n^{\{}n+1{\}}{\$} queries such that each agent gets a connected piece that gives the agent at least {\$}1/(3n){\$} of the value of the whole cake.}, comment = {}, date_added = {2016-10-13}, date_published = {2016-06-07}, urls = {http://arxiv.org/abs/1604.03655v10,http://arxiv.org/pdf/1604.03655v10}, collections = {Attention-grabbing titles,Easily explained,Protocols and strategies,Food,Fun maths facts}, url = {http://arxiv.org/abs/1604.03655v10 http://arxiv.org/pdf/1604.03655v10}, urldate = {2016-10-13}, archivePrefix = {arXiv}, eprint = {1604.03655}, primaryClass = {cs.DS}, year = 2016 }